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Dženan Gušić

Abstract—In 1949, A. Selberg discovered a real variable (an
elementary) proof of the prime number theorem. A number of
authors have adapted Selberg’s method to achieve quite a good
corresponding error term. The Riemann hypothesis has never been
proved or disproved however. Any generalization of the prime number
theorem to the more general situations is known in literature as a
prime geodesic theorem. In this paper we derive yet another proof of
the prime geodesic theorem for compact symmetric spaces formed
as quotients of the Lie group SL4 (R). While the first known proof
in this setting applies contour integration over square boundaries,
our proof relies on an application of modified circular boundaries.
Recently, A. Deitmar and M. Pavey applied such prime geodesic
theorem to derive an asymptotic formula for class numbers of orders
in totally complex quartic fields with no real quadratic subfields.
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I. INTRODUCTION

WE introduce the notation following [13] and [5]. It will
be introduced in the sequel.

Let G = SL4 (R) and let K be the maximal compact
subgroup SO (4).

Let Γ ⊂ G be discrete and co-compact.
Then, there exists a one to one correspondence between

conjugacy classes in Γ and free homotopy classes of closed
geodesics on he symmetric space XΓ = Γ \ G / K.

Let

A− =




a
a

a−1

a−1

 : 0 < a < 1

 ,

and

B =

(
SO(2)

SO(2)

)
.

Let E (Γ) be the set of primitive conjugacy classes [γ] in Γ
such that γ is conjugate in G to an element aγbγ of A−B.
For γ ∈ Γ we write aγ also for the top left entry in the matrix
aγ and define the length lγ of γ to be 8 log aγ .

Suppose that Gγ , Γγ are the centralizers of γ in G and Γ,
respectively, and Kγ = K ∩ Gγ .

For x > 0 we define the function

π (x) =
∑

[γ]∈E(Γ)

elγ≤x

χ1 (Γγ) ,

where χ1 (Γγ) is the first higher Euler characteristics of the
symmetric space XΓγ = Γγ \ Gγ / Kγ .

Dž. Gušić is with the Department of Mathematics, Faculty of Sciences and
Mathematics, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo,
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In [13], the author proved (a prime geodesic theorem) that
for x → ∞

π (x) ∼ 2x

log x
,

and more sharply, that

π (x) = 2 li (x) +O
(
x

3
4 (log x)

−1
)

as x → ∞, where li (x) =
x∫
2

dt
log t is the integral logarithm.

The main purpose of this paper is to give yet another proof
of the same prime geodesic theorem by applying different
means.

II. PRELIMINARIES

Note that if Γ is torsion-free, the first higher Euler charac-
teristics of Γ is defined to be

χ1 (XΓ) = χ1 (Γ) =

dimXΓ∑
j=0

(−1)
j+1

jhj (XΓ) ,

where hj (XΓ) is the j-th Betti number of XΓ.
If Γ is not torsion-free, then, the fact that every arithmetic

subgroup of G has a torsion-free subgroup of finite index (see,
e.g., [3]), we may assume that Γ

′ ⊂ Γ is such a group.
Let θ be the Cartan involution fixing K pointwise.
Then, there exists a θ-stable Cartan subgroup H = AB of

G, where A is a connected split torus and B ⊂ K is a Cartan
of K.

We assume that A is central in G and of dimension one.
Suppose that C is the center of G.
Then, C ⊂ H .
Let BC = B ∩ C, ΓC = Γ ∩ C.
Furthermore, let ΓA = A ∩ ΓCBC be the projection of ΓC

to A.
By [17, Lemma 3.3], ΓA is a discrete and cocompact in A.
Now, the first higher Euler characteristics of Γ is defined

by (see, [13, p. 9, (1.4)])

χ1 (XΓ) = χ1 (Γ) = χ1

(
Γ
′
)
·

[
ΓA : Γ

′

A

]
[Γ : Γ′ ]

.

In our particular case G = SL4 (R), K = SO (4), the rank
one torus A is given by
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A =




a
a

a−1

a−1

 : a > 0

 ,

and

B =

(
SO(2)

SO(2)

)
is a compact Cartan subgroup of

M = S

(
SL±2 (R)

SL±2 (R)

)
.

The first higher Euler characteristics χ1 (Γγ) of Γγ is then
defined as before, i.e., by (1.7) in [13, p. 16].

Let gR = sl4 (R) and g = sl4 (C) be respectively the Lie
algebra and complexified Lie algebra of G.

Let b be the following multiple of the trace form on g (see,
[4])

b (X,Y ) = 16 tr (XY ) .

Furthermore, let kR ⊂ gR be the Lie algebra of K and pR
⊂ gR the orthogonal space of kR with respect to the form b.

Then, b is positive definite and Ad (K)-invariant on pR, and
thus defines a G-invariant metric on the symmetric space X
= G / K attached to G.

We put

N =

(
I2 Mat2 (R)
0 I2

)
,

N̄ =

(
I2 0

Mat2 (R) I2

)
.

Let m, a, n and n̄ be the complexified Lie algebras of M ,
A, N and N̄ , respectively.

In particular, we put P to be the parabolic with Langlands
decomposition P = M A N , ρP to be the half-sum of the
positive roots of the system (g, a) such that

ρP


a

a
a−1

a−1

 = 4a.

Now, A− = {exp (tH1) : t > 0} is the negative Weyl
chamber in A, where

H1 =
1

8


a

a
a−1

a−1

 ∈ aR.

In order to describe what we said above in a more detailed
manner, we let EP (Γ) to be the set of all conjugacy classes
[γ] in Γ such that γ is conjugate in G to an element aγbγ of
A−B.

An element γ ∈ Γ is called primitive if for δ ∈ Γ and n ∈
N the equation δn = γ implies that n = 1.

Let EpP (Γ) ⊂ EP (Γ) be the subset of primitive classes.
A virtual representation σ of a group is a formal difference

of two representations σ = σ+ − σ−, which is called finite
dimensional if both σ+ and σ− are.

The trace, the determinant, the dimension of a virtual
representation σ = σ+ − σ− are defined by

trσ = trσ+ − trσ−,

detσ =
detσ+

detσ−
,

dimσ = dimσ+ − dimσ−,

respectively.
If V is a representation space with Z grading, then, we

should consider it naturally as a virtual representations space
by V + = VEV EN and V − = VODD.

In particular, if V is a subspace of g, we shall always
consider the exterior product

∧∗
V as a virtual representation∧∗

V =
∧EV EN

V −
∧ODD

V with respect to the adjoint
reresentation.

For any finite-dimensional virtual representation σ of M , we
define, for Re (s) large, the generalized Selberg zeta function

ZP,σ (s) =

exp

− ∑
[γ]∈EP(Γ)

trσ (bγ)χ1 (Γγ) lγ0

lγ det
(

1− (aγbγ)
−1 |n̄

)e−slγ
 .

We define, for Re (s) large, the generalized Ruelle zeta
function

RΓ (s)

= exp

− ∑
[γ]∈EP(Γ)

χ1 (Γγ) lγ0

lγ
e−slγ

 .

For any finite-dimensional virtual representation σ of M ,
and Re (s)� 0, the generalized Ruelle zeta function RΓ,σ (s)
is defined in [13, p. 43].

Thus, RΓ,σ (s) extends to a meromorphic function on C,
and

RΓ,σ (s) =
4∏
q=0

ZP,(
∧q n̄⊗Vσ)

(
s+

q

4

)(−1)q

.

For γ ∈ Γ, let N (γ) = elγ .
Thus, for x > 0,

π (x) =
∑

[γ]∈EpP (Γ)
N(γ)≤x

χ1 (Γγ) .
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III. MAIN RESULT

Theorem 1. (Prime Geodesic Theorem)

π (x) = 2 li (x) +O
(
x

3
4 (log x)

−1
)

as x → ∞, where li (x) =
x∫
2

dt
log t is the integral logarithm.

Proof: Let k ≥ max {J, 2D}, k ∈ N, where D is the
degree of the polynomial G (s) such that

ZP,σ (1− s) = e−G(s)ZP,σ (s) ,

and J ∈ N is such that Z1 (s) and Z2 (s) are both of order at
most J , where

ZP,σ (s) =
Z1 (s)

Z2 (s)
.

Moreover, let x > 1, and c > 1.
We have for Re (s) > 1,

R
′

Γ,σ (s)

RΓ,σ (s)
=
∑
γ

χ1 (Γγ) trσ (bγ) lγ0e
−slγ .

Hence,

R
′

Γ,1 (s)

RΓ,1 (s)
=
∑
γ

χ1 (Γγ) lγ0
e−slγ ,

Re (s) > 1.
By [13, p. 62, (3.5)],

1

2π i

c+i∞∫
c−i∞

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xsds

=
1

k!

∑
N(γ)≤x

χ1 (Γγ) lγ0

(
1− N (γ)

x

)k
.

Since

ψj (x) =
1

j!

∑
N(γ)≤x

χ1 (Γγ) lγ0
(x−N (γ))

j
,

where

ψ0 (x) = ψ (x) =
∑

[γ]∈EP (Γ)

χ1 (Γγ) lγ0
,

ψj (x) =

x∫
0

ψj−1 (t) dt,

j ∈ N, it follows that

ψk (x)

=
1

2π i

c+i∞∫
c−i∞

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds.

Let A � 0 be fixed and consider the segment of the line
Re (s) = 1

2 given by 1
2 + i t, A − 1 < t ≤ A + 1.

Applying the Dirichlet principle (in eexactly the same way
as in the proof of Lemma 3.1.3 in [13, p. 61]), we conclude
that there exists a 1

2 + i Ā in the segment whose distance from
any pole or zero of the zeta functions ZP,1 (s), ZP,∧q n̄ (s), q
∈ {1, 2, 3, 4} is larger than C

ĀD
for some fixed C > 0.

Define

T =

√
Ā2 +

1

4
.

Furthermore, let

C (T )

=

{
s ∈ C : |s| ≤ T,Re (s) ≤ 1

2

}
∪{

s ∈ C :
1

2
≤ Re (s) ≤ c,−Ā ≤ Im (s) ≤ Ā

}
.

Having in mind the singularity pattern of the Ruelle zeta
function RΓ,1 (s) (given by Theorem 3.4.3 in [13]), and the
fact that ∣∣∣∣12 + i Ā− 1

2
− i γP,1

∣∣∣∣
=

∣∣∣∣12 + i Ā− ρP,1
∣∣∣∣

>
C

ĀD

for all singularities ρP,1 of the Selberg zeta function ZP,1 (s),

we conclude that no pole of
R
′
Γ,1(s)

RΓ,1(s) is on the boundary of
C (T ) for Re (s) ≥ 1

2 .
Hence, obviously, no pole of

R
′

Γ,1 (s)

RΓ,1 (s)
s−1 (s+ 1)

−1
... (s+ k)

−1
xs+k

is on the boundary of C (T ) for Re (s) ≥ 1
2 .

Suppose that no pole of
R
′
Γ,1(s)

RΓ,1(s)s
−1 (s+ 1)

−1
... (s+ k)

−1
xs+k is on the

boundary of C (T ) for Re (s) ≤ 1
2 .

Applying the Cauchy integral formula to the integrand of
ψk (x) along the boundary of C (T ), we obtain

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2020.14.7 Volume 14, 2020

 
ISSN: 1998-4464

 
44



∫
C(T )+

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds

=2π i
∑

z∈C(T )

Ress=z

(
R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+k

)
,

where C (T )
+ denotes the boundary of C (T ) with the anti-

clockwise orientation.
We have,

1

2π i

c+i Ā∫
c−i Ā

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds

=
∑

z∈C(T )

Ress=z

(
R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+k

)
−

1

2π i

∫
CT

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds+

1

2π i

1
2 +δ+i Ā∫
1
2 +i Ā

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds+

1

2π i

1
2−i Ā∫

1
2 +δ−i Ā

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds+

1

2π i

c+i Ā∫
1
2 +δ+i Ā

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds+

1

2π i

1
2 +δ−i Ā∫
c−i Ā

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds,

(1)

where CT is the circular part of C (T )
+, and 0 < δ < c − 1

2 .
We may write

ψk (x)

=
1

2π i

c+i Ā∫
c−i Ā

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds+

1

2π i

c+i∞∫
c+i Ā

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds+

1

2π i

c−i Ā∫
c−i∞

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds.

(2)

Since

R
′

Γ,1 (s)

RΓ,1 (s)
=

4∑
q=0

(−1)
q
Z
′

P,
∧q n̄ (s+ q

4

)
ZP,

∧q n̄ (s+ q
4

) ,
it follows that

R
′
Γ,1(s)

RΓ,1(s) is bounded in any half-plane of the form
Re (s) > 1 + ε.

We estimate,

1

2π i

c+i∞∫
c+i Ā

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds

=O

xc+k +∞∫
Ā

dt

tk+1

 = O
(
xc+kĀ−k

)
.

(3)

Similarly,

1

2π i

c−i Ā∫
c−i∞

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds

=O
(
xc+kĀ−k

)
.

(4)

Combining (1)-(4), it follows that

ψk (x)−O
(
xc+kĀ−k

)
=

∑
z∈C(T )

Ress=z

(
R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+k

)
−
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1

2π i

∫
CT

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds+

1

2π i

1
2 +δ+i Ā∫
1
2 +i Ā

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds+

1

2π i

1
2−i Ā∫

1
2 +δ−i Ā

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds+

1

2π i

c+i Ā∫
1
2 +δ+i Ā

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds+

1

2π i

1
2 +δ−i Ā∫
c−i Ā

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds.

(5)

By [13, p. 38, Lemma 2.3.2],

ZP,σ (s) =
Z1 (s)

Z2 (s)
,

where the zeros of Z1 (s) correspond to the zeros of ZP,σ (s),
the zeros of Z2 (s) correspond to the poles of ZP,σ (s), and σ
is a finite-dimensional virtual representation of M .

The orders of the zeros of Z1 (s) (resp. Z2 (s)) equal the
orders of the corresponding zeros (resp. poles) of ZP,σ (s).

Functions Z1 (s) and Z2 (s) are both of finite order, i.e.,
they are both of order at most J .

Hence, the fact that for a finite-dimensional virtual repre-
sentation σ of M

RΓ,σ (s) =

4∏
q=0

ZP,(
∧q n̄⊗Vσ)

(
s+

q

4

)(−1)q

,

it follows immediately that a meromorphic extension over C
of the Ruelle zeta function RΓ,σ (s) can be expressed as

RΓ,σ (s) =
Z1
R,σ (s)

Z2
R,σ (s)

,

where Z1
R,σ (s), Z2

R,σ (s) are entire functions of order at most
J over C.

In particular,

RΓ,1 (s) =
Z1
R,1 (s)

Z2
R,1 (s)

, (6)

where Z1
R,1 (s), Z2

R,1 (s) are entire functions of order at most
J over C.

Now, we first estimate the integral over CT on the right
hand side of (5).

By applying Proposition 7 in [6, p. 509], and (6), we obtain
that

1

2π i

∫
CT

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds

=O

x 1
2 +kT−k−1

∫
CT

∣∣∣∣∣R
′

Γ,1 (s)

RΓ,1 (s)

∣∣∣∣∣ |ds|


=O

x 1
2 +kT−k−1

∫
|s|=T

∣∣∣∣∣R
′

Γ,1 (s)

RΓ,1 (s)

∣∣∣∣∣ |ds|


=O
(
x

1
2 +kT−k−1+J log T

)
.

(7)

Consider the integral over
[

1
2 + i Ā, 1

2 + δ + i Ā
]

on the
right hand side of (5).

By Theorem 1, (b) (i), in [10],

R
′

Γ,1 (s)

RΓ,1 (s)
= O

(
ĀJ−1+ε

)
+

∑
|Ā−γP,1|≤1

1

s− ρP,1

for s = σ1 + i Ā, 1
2 ≤ σ1 ≤ 1

2 + δ.
Since

∣∣Ā− γP,1∣∣ > C
ĀD

for any singularity ρP,1 = 1
2 +

i γP,1 of ZP,1 (s), we obtain that

R
′

Γ,1 (s)

RΓ,1 (s)

=O
(
ĀJ−1+ε

)
+O

 ∑
|Ā−γP,1|≤1

1

|s− ρP,1|


=O

(
ĀJ−1+ε

)
+O

 ∑
|Ā−γP,1|≤1

1∣∣Ā− γP,1∣∣


=O
(
ĀJ−1+ε

)
+O

ĀD ∑
|Ā−γP,1|≤1

1


=O

(
ĀJ−1+ε

)
+O

(
Ā2D

)
=O

(
T J−1+ε

)
+O

(
T 2D

)
.

for s = σ1 + i Ā, 1
2 ≤ σ1 ≤ 1

2 + δ.
We estimate,

1

2π i

1
2 +δ+i Ā∫
1
2 +i Ā

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds
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=O

x 1
2 +δ+kT−k−1

1
2 +δ+i Ā∫
1
2 +i Ā

∣∣∣∣∣R
′

Γ,1 (s)

RΓ,1 (s)

∣∣∣∣∣ |s|


=O
(
x

1
2 +δ+kT−k−2+J+ε

)
+

O
(
x

1
2 +δ+kT−k−1+2D

)
.

(8)

Analogously,

1

2π i

1
2−i Ā∫

1
2 +δ−i Ā

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds

=O
(
x

1
2 +δ+kT−k−2+J+ε

)
+

O
(
x

1
2 +δ+kT−k−1+2D

)
.

(9)

Finally, we estimate the integrals over[
1
2 + δ + i Ā, c+ i Ā

]
and

[
c− i Ā, 1

2 + δ − i Ā
]

in (5).
By Theorem 1, (b) (ii), in [10],

R
′

Γ,1 (s)

RΓ,1 (s)
= O

(
δ−1ĀJ−1+ε

)
for s = σ1 + i Ā, 1

2 + δ ≤ σ1 ≤ c.
We obtain,

1

2π i

c+i Ā∫
1
2 +δ+i Ā

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds

=O

xc+kT−k−1

c+i Ā∫
1
2 +δ+i Ā

∣∣∣∣∣R
′

Γ,1 (s)

RΓ,1 (s)

∣∣∣∣∣ |s|


=O
(
δ−1xc+kT−k−1ĀJ−1+ε

)
=O

(
δ−1xc+kT−k−1T J−1+ε

)
=O

(
δ−1xc+kT−k−2+J+ε

)
.

(10)

Similarly,

1

2π i

1
2 +δ−i Ā∫
c−i Ā

R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds

=O
(
δ−1xc+kT−k−2+J+ε

)
.

(11)

Combining (5), (7)-(11), we obtain

ψk (x)−O
(
xc+kĀ−k

)
=

∑
z∈C(T )

Ress=z

(
R
′

Γ,1 (s)

RΓ,1 (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+k

)
+

O
(
x

1
2 +kT−k−1+J log T

)
+

O
(
x

1
2 +δ+kT−k−2+J+ε

)
+

O
(
x

1
2 +δ+kT−k−1+2D

)
+

O
(
δ−1xc+kT−k−2+J+ε

)
.

Here, letting T → ∞ (note that T → ∞ if and only if Ā
→ ∞), we conclude that

ψk (x) =
∑
α∈Sk

ck (α)xα+k, (12)

where Sk denotes the set of poles of
R
′
Γ,1(s)

RΓ,1(s)s
−1 (s+ 1)

−1
... (s+ k)

−1, and ck (α)
denotes the residue at α.

Since (12) actually represents the equality (3.7) in [13,
p. 63], the equality

ψ (x) = 2x+O
(
x

3
4

)
(13)

as x → ∞, follows in exactly the same way as in [13, pp. 63-
65].

Hence, the prime geodesic theorem

π (x) = 2 li (x) +O
(
x

3
4 (log x)

−1
)

as x → ∞, follows from Proposition 3.7.1 in [13, p. 82].
This completes the proof.

IV. REMARKS

By [13, p. 65],

d−2D4

 ∑
α∈S

p
4
2D

c2D (α)xα+2D


=O

(
KD−1x

p
4

)
+

O
(
K−D−1x2D+ p

4 d−2D
)
,

(14)

where p ∈ {−2,−1, 0, 1, 2}, S
p
4

2D = S2D ∩
(q + i (R \ {0})), q ∈

{
− 1

2 ,−
1
4 , 0,

1
4 ,

1
2

}
, d > 0, K > 0, and

the operator ∆ is defined by

∆f (x) =
2D∑
i=0

(−1)
i

(
2D

i

)
f (x+ (2D − i) d)
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for a function f : R → R.
Note that the error term in (14) is dominated by

O
(
KD−1x

1
2

)
+O

(
K−D−1x2D+ 1

2 d−2D
)
.

Putting K = xα, d = xβ , and requiring that

αD − α+
1

2
=

3

4
,

−αD − α+ 2D +
1

2
− 2Dβ =

3

4
,

we find that α = 1
4(D−1) , β = 4D−5

4D−4 , i.e., that K = x
1

4(D−1) ,

d = x
4D−5
4D−4 .

Thus, the error term O
(
x

3
4

)
in (13) follows as required.

In [13] and [5], the authors applied the method developed
in [14] and [15] for compact Riemann surfaces.

The method described in this paper is very well applied in
[12], [1], [9], and [7] in the case of real hyperbolic manifolds
with cusps, compact, odd-dimensional, real hyperbolic spaces,
and compact, even-dimensional locally symmetric Riemannian
manifolds of strictly negative curvature, respectively.

In order to derive their results, the authors usually apply
approximate formulas for the logarithmic derivative of the
corresponding zeta function, such as the Riemann or the
Selberg, or the Ruelle zeta function (see, [16], [11], [8], [2]).
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